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Cloud blitzkrieg! :-)
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Supercomputers - '60-'80
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Clusters - since '70
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P2P - since end of '90
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What is cloud?

@ No single definition
o A bit grid-like
e With massive storage
e CPUs + data put close
@ Commonly agreed

e Data intensive
o Lot of CPU power
e SCALE!
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Introduction
°

What makes it different?

Scale bring problems. ..

@ Mean Time Between Failures (MTBF):
e Server: 6 years
o Disk: 4 years

Good results!

10k servers (2 disk each)
Every day:

o 5 servers die
o 14 disks fail

Lesson learned

At scale incredibly rare is a commonplace.
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How to deal with it?

@ Errors do happen
e Any time
e Any place
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Introduction
°

How to deal with it?

@ Errors do happen

e Any time

e Any place
@ Massive scale
Lots of communication
Unreliable networks
Data intensive

o ...
@ Addressed by software
@ Algorithms
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Gossip
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The problem

@ Massive scale system
@ Node has new data
@ How to inform others?

o One-to-one?
@ Will take ages to propagate!
@ What about packet loss?
@ What about node loss?

o All-to-all?
@ O(N?) messages!
@ Sending will kill any network!
@ Receiving will kill every node!

@ We can do better than that. ..
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@ Send update to it
© Receive incoming messages / wait
O Repeat periodically



Gossip
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The solution

© Each node:

@ Pick random node

@ Send update to it

© Receive incoming messages / wait
O Repeat periodically

@ Run on all nodes
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Gossip
Example run
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Spreads like a disease!

Information spread with gossip/push

100 7 ;
90 —
80 —
= 70 -
B
g 60 —
=
£
g 50 -
&
s 40 —
15}
5
30 —
A N=10 —
20 N=100 _
N=1000
10 N=10000 N
N=100000
0 | I

0 2 4 6 8 10 12 14 16



Gossip

Gossip at Amazon S3

@ Amazon S3:

@ Simple Storage Service
@ Online file storage
o Part of Amazon Web Services

@ Gossiping:

e Spreading state info

@ Base component of storage
@ Some numbers:
Over 2 % 10%2 objects (2013)

99.9% availability/month am azon
99.99% availability/yealrl Websewlcesm

99.999999999% durability/year

https://upload.wikimedia.org/wikipedia/commons/e/ed/AWS_Simple_Icons_Storage_Amazon_S3_Bucket_with_Objects.svg
https://upload.wikimedia.org/wikipedia/commons/1/1d/AmazonWebservices_Logo.svg
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Membership
.

Basic concepts

@ Aka. "failure detection"
@ Properties:

@ Accuracy == no mistakes during judgment

o Completeness == every failure is detected
@ Speed == time to first detection

e Scale == distributing load on nodes uniformly

@ Accuracy vs. completeness

@ Cannot have both (over unreliable networks)!
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The idea

@ Inform others:

e You're alive
@ Others known to be:

@ Alive
@ Dead

@ Thatiis:

e Propagate dead/alive info...
@ Over large number of nodes. ..

@ Sounds familiar? :-)
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@ Table for node A: @ Three columns

1 2 3 © Node name
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© Entry timeout
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4 -41
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B
C




Membership
°

Local entries table

@ Each node keeps table
@ Table for node A: @ Three columns
1 2 3 © Node name
@ Heartbeat count
A 5 © Entry timeout

@ Timeout is local

4 -41 @ Timed out entries are dead
@ Heartbeat incremented on send
5-13

B
C
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Merging entries
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Merging entries




Membership

Amazon DynamoDB

@ Amazon DynamoDB:

Database-like

Distributed Hash Table (DHT)
Powers Amazon Web Services
Used by Amazon S3

@ Membership + failure detection

@ No central register

@ Excellent scaling amazon
web services™

https://upload.wikimedia.org/wikipedia/commons/e/ed/AWS_Simple_Icons_Storage_Amazon_S3_Bucket_with_Objects.svg
https://upload.wikimedia.org/wikipedia/commons/1/1d/AmazonWebservices_Logo.svg
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Overview

@ Scalable, Weakly-consistent, Infection-style Membership protocol

@ Pings instead of heartbeats
@ Algorithm:

© Ping 1, random host (H)
@ If got pong == ok (done)
© Else
@ Ask N, random hosts to ping (H)
@ 1"ack" ==o0k
© Else mark as failed
@ Extra attempt to verify:

@ Special (more network paths)
e Temporal (more time to response)
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Example - direct ping succeeded
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Example - direct ping failed

| nodeA i | nodeB i | nodeX i | nodeY i | nodeZ
| | | | |
1 PING » L | | |
e | | |
| | |
| | |
. .1 | |
timeout - try indirect pinging T T
| | |
| | |
PING nodeB PLZ g } : :
>
| |
| |
PING nodeB PLZ > i
|
|
PING nodeB PLZ »
>
< PING
< L]
I
|
|
< ' PING L
| |
| |
PONG _____ . Ll i
i >
|
< } PING
<
| I
| |
| |
5 —— N e —— GOT PONG L3 |
| | |
| | |
| | |
I | |
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Example - all pings failed

‘ nodeA i ‘ nodeB i ‘ nodeX i ‘ nodeY i ‘ nodeZ

I
| PING

v

. 1
timeout - try indirect pinging
|

PING nodeB PLZ >
PING nodeB PLZ >
>
PING nodeB PLZ >
>
¢ PING | |
i
I
< ! PING
< T
I
I
e : PING
|
I

T ——
timeout - nodeB is dead
|

JRPRRRG U | N N —
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Suspicion mechanism




SWIM
Suspicion mechanism

ping failed \ ping ok

Suspected
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© Map-Reduce
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Map-Reduce
°

Overview

Classic algorithm
Proposed by Google
Sourcing from functional languages
Two stages:
e Map
@ Reduce
Mapping:
e Input: raw source data
o Output: (key -> value) pairs

Reducing:

o Input: (key -> valuesl[])
@ Output: (key -> merged-values)
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Map-Reduce
°

Cars example

@ Input: database of cars registered, per year

e 1991:

@ Opel Vectra, ABS
@ Mercedes W124, ABS, airbag

e 1995:

@ Opel Vectra, AC, TC
@ Dodge Viper, ABS, airbag

@ Query: which cars where produced when?

@ Opel Vectra: 1988-2009
o Dodge Viper: 1992-1995
o ...



Computations

Map-Reduce
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Map-Reduce
°

Algorithm properties

@ Mapping:

e Generation is independent

o Perfect parallel task
@ Reducing:

e Can be run in parallel

e Good distribution of mapped entries needed!
@ Algorithm:

e Highly parallel
o Widely adopted
e Common solution for batch tasks
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Practical applications

a[aIEZf—']
aed Google

CouchDB

. mongoDB -\ riq k

https://upload.wikimedia.org/wikipedia/conmons/a/aa/Logo_Google 2013_0fficial.svg
https://upload.wikimedia.org/wikipedia/conmons/0/0e/Hadoop_logo. svg
https://upload.wikimedia.org/wikipedia/en/f/f8/CouchDB. svg
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https://upload.wikimedia.org/wikipedia/en/8/8e/Riak distributed NoSQL key-value_data_store_logo.png


https://upload.wikimedia.org/wikipedia/commons/a/aa/Logo_Google_2013_Official.svg
https://upload.wikimedia.org/wikipedia/commons/0/0e/Hadoop_logo.svg
https://upload.wikimedia.org/wikipedia/en/f/f8/CouchDB.svg
https://upload.wikimedia.org/wikipedia/en/e/eb/MongoDB_Logo.png
https://upload.wikimedia.org/wikipedia/en/8/8e/Riak_distributed_NoSQL_key-value_data_store_logo.png

e Raft



Once upon a time...




Once upon a time...




Once upon a time...




Consensus

Consensus problem
Reaching an agreement upon a single value/state.

@ Fundamental problem in distributed systems




Consensus

Consensus problem
Reaching an agreement upon a single value/state.

@ Fundamental problem in distributed systems
@ How to:

e Agree upon single value?
o Tolerate failures?




Consensus

Consensus problem
Reaching an agreement upon a single value/state.

@ Fundamental problem in distributed systems
@ How to:

e Agree upon single value?
o Tolerate failures?

@ Example algorithms:

e Paxos
o Raft
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Raft’s organization

Node is in a given state

Basic operations:

o Leader election
e Log replication ("state machine")

majority

higher
term

Voting for a leader
"Term counter":

e Identify voting rounds
@ Incremented by candidate

Leader:

e Send heartbeats
@ Synchronizes followers

Clients talk with leader



Log replication

How log
."8 (state machine)
w0 is replicated?
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Log replication
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Log replication
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Leader election

How leader
election works?

http://i.huffpost.com/gen/1849024/thumbs/o- ELECTION- BALLOT- facebook. jpg


http://i.huffpost.com/gen/1849024/thumbs/o-ELECTION-BALLOT-facebook.jpg

Leader election

S4 S3



Leader election

S4 S3



Leader election

S4 S3



Leader election

S4 S3



Leader election

S4 S3



Leader election




That simple?

T Does leader
\ T 4‘;' | )’ election
il 1% 1]

e el always work?

http://cache.gawkerassets.com/assets/images/4/2010/01/500x_hamshred. jpg
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Raft's ecosystem

@ Base of CockroachDB

@ Widespread use

@ "Paxos made simple"
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Raft's ecosystem

@ Base of CockroachDB

@ Widespread use

@ "Paxos made simple"

Raft’s implementations:

cppa-raft, LogCabin, bspolley/raft, noeleo/raft, whitewater,
willemt/raft, NRaft, dupdob/RAFTING, dinghy, melee, raft-clj,
rodriguezvalencia/rafting, draft, zraft_lib, eraft, huckleberry,
rafter, rafterl, Flotten, graft, go-raft, etcd/raft, hashicorp/raft,
jpathy/raft, peterbourgon/raft, pontoon, seaturtles, kontiki,
allengeorge/libraft, barge, chicm/CmRaft, copycat,
drpicox/uoc-raft-2013p, jalvaro/raft, jgroups-raft,
RaftkVDatabase/|SimpleDB, OpenDaylight, pvilas/raft,
Raft4Ws, Raft-JVM, r4j, liferaft, benbjohnson/raft.js,
dannycoates/raft-core, kanaka/raft.js, skiff, ocaml-raft,
py-raft, simpleRaft, floss, giraft, harryw/raft, zodiac-prime,
hoverbear/raft, akka-raft, archie/raft, cb372/raft, chelan,
ckite, scalaraft, lite-raft, C5, yora, srned/Prez, fxsjy/Ins

https://pbs.twimg.com/profile_images/592837647577587714/eNMItpUG_400x400.png
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CAP theorem

@ Systems’ properties:
© Consistency
Q Availability
@ Partition-tolerance

AVAILABILITY PARTITION
TOLERANCE

not consistent
when partitioned

CAP theorem
Having C/A/P — choose (at most) 2 of 3!




Example systems’ classification

@ Having:
e Consistency
e Availability
o Partition-tolerance
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Example systems’ classification

@ Having:
e Consistency
e Availability
e Partition-tolerance
@ Examples:
e PostgreSQL - CAP
e MongoDB - CAP

mongoDDb
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Example systems’ classification

@ Having:

e Consistency

e Availability

e Partition-tolerance
@ Examples:

e PostgreSQL - CAP

R ool mongoDB

o

cassandra
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Example systems’ classification

@ Having:

e Consistency

e Availability

e Partition-tolerance
@ Examples:

e PostgreSQL - CAP

e MongoDB - CAP

o Cassandra - CAP m Ongo DB
@ In reality:

@ Modulo bugs! :-)
e Often configuration-dependent. ..

e "Call me maybe" series \7”;%

https://upload.wikimedia.org/wikipedia/commons/2/29/Postgresql_elephant.svg Cassandra

https://upload.wikimedia.org/wikipedia/commons/5/5e/Cassandra_logo.svg
https://upload.wikimedia.org/wikipedia/en/e/eb/MongoDB_Logo.png
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e Time



Time
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Synchronizing time

@ Given events:
e A (at nodeA)
o B (at nodeB)

@ Did A happened before B?


http://1.bp.blogspot.com/-m4Wd15SQ3eY/T75YMmeYwrI/AAAAAAAAAaw/nrH2BxGSimw/s320/Clock+art-Salvador+Dali.jpg

Time
]

Synchronizing time

@ Given events:

o A (at nodeA)
o B (at nodeB)

@ Did A happened before B?
@ Check their time!
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Time
]

Synchronizing time

@ Given events:

o A (at nodeA)

o B (at nodeB)
@ Did A happened before B?
@ Check their time!

@ Are clocks in sync? (clock skew)

@ How precise?
@ What about latencies?

o Will clocks remain in sync? (clock drift)

http://1.bp.blogspot.com/-m4Wd155Q3eY/T75YMmeYwrI/AAAAAAAAAaw/nrH2BxGSimw/s320/Clock+art-Salvador+Dali. jpg
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Cristian’s algorithm

@ Assuming delayl = delay?
® New time: t; =t + BT
| @ Where:

@ RTT - Round Trip Time
e t; —new local time

=qgetTime .
o t-time from remote party

nodeA nodeB

J_ delayl

delay2
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e t; —new local time
e t-time from remote party
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Time
°

Cristian’s algorithm

Assuming delayl = delay?2
New time: t; =t + 81T
Where:

@ RTT - Round Trip Time
e t; —new local time

=qgetTime .
o t-time from remote party

Fairly Simple™;-)

nodeA nodeB

(]

J_ delayl

delay?2
Often imprecise

°
°
@ Single point of synchronization
°

Does not scale



Time
°

NTP’s algorithm

@ Network Time Protocol

®© O 06
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@ More clock sources

@ Better scalability
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NTP’s algorithm

@ Network Time Protocol
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@ More clock sources

@ Better scalability

Time
°

Server 135ms137ms
tt, time

) 0=65ms
Client

time
to t3

231ms 298ms
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NTP’s algorithm

@ Network Time Protocol
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@ More clock sources

@ Better scalability

Time
°

Server 135ms137ms
tt,

\/

Client

1 t,

231ms 298ms

@ Better RTT estimation
@ Probabilistic analysis of data

@ Continuous operation
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Time
°

NTP’s algorithm

@ Network Time Protocol Server 135ms137ms

®© 00 E ‘ﬁz

\/

1 Client
g B8
4 \* 4 \ / N\ i b &3
2§—8—8 B ‘ 231ms 298ms
/ [4 ¥ \\\fii&
3 B B-f B—F-8 @ Better RTT estimation

@ Probabilistic analysis of data

@ More clock sources . .
@ Continuous operation

@ Better scalability

@ Commonly use in the Internet
@ Still clocks skew and drift. ..

http://upload.wikimedia.org/wikipedia/commons/c/c9/Network_Time_Protocol_servers_and_clients.svg

http://upload.wikimedia.org/wikipedia/commons/8/8d/NTP-Algorithm.svg
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Time
°

Now what if...

@ Cannot solve?

e Step back
o Find a different path...

@ What is REALLY needed?

@ Ordering knowledge
e "What happened first?"

@ Can be done without time. ..



Q us



Logical ordering

@ Lamport’s Time Stamp
@ Proposed by Leslie Lamport

@ Establishes happens-before relation



https://upload.wikimedia.org/wikipedia/commons/5/50/Leslie_Lamport.jpg

Logical ordering

Lamport’s Time Stamp

Proposed by Leslie Lamport
Establishes happens-before relation
Each process has counter [ts
Initially Its = 0
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Logical ordering

@ Lamport’s Time Stamp

@ Proposed by Leslie Lamport

@ Establishes happens-before relation
@ Each process has counter /ts

@ Initially lts =0

@ Algorithm:
o Before sending: lts=1Its + 1
@ Include counter in the message N F e

e When receiving: Its = max(lts, msg_Its) + 1

@ Also can increment at will

https://upload.wikimedia.org/wikipedia/commons/5/50/Leslie_Lamport.jpg
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Properties

@ Events: Aand B

@ With timestamps: C(A) and C(B)
@ A— B=C(A) <C(B)

@ Note: implication!

@ What does C(A) < C(B) mean?

@ One of:

e A—+B
e A|B

e ButnotB — A



Properties

Events: A and B

With timestamps: C(A) and C(B)
A — B = C(A) < C(B)

Note: implication!

What does C(A) < C(B) mean?

@ One of:

e A—+B
e A|B

e ButnotB — A

Cause-effect ordering!



Let’s check!

C(A)<C(B)<A—BVA|B




Lamport’s timestamps at . ..

@ Pretty much everywhere...;)

@ Including...


https://upload.wikimedia.org/wikipedia/commons/0/02/Nokia_wordmark.svg

Lamport’s timestamps at . ..

@ Pretty much everywhere...;)

NOKIA

@ Including...



https://upload.wikimedia.org/wikipedia/commons/0/02/Nokia_wordmark.svg

Lamport’s timestamps at . ..

@ Pretty much everywhere...;)
@ Including...
@ Part of BTS software:

e WCDMA OAM
e SRAN OAM
o Cloud OAM

Distributed service registration

Introduces logical ordering

Registration updates’ ordering

https://upload.wikimedia.org/wikipedia/commons/0/02/Nokia_wordmark.svg
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Vector clocks

Part 10

@ Vector clocks
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Vector clocks
°

Enhanced logical ordering

Similar to Lamport’s timestamps

Detects parallel events

Each process has vector of counters vc = [c1,c2, ..., cN]
Initially vc = [0, 0, ..., 0]

Algorithm:

e Oni-th node

Before sending: vc[i] = vc[i] + 1
Include vector in the message
When receiving:

@ Vj #i: vclj] = max(vc[j], msg_vclj])
o vc[il =vc[i]+1

Also can increment local counter at will



Vector clocks
°

You don’t say...
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Vector clocks
°

Properties

@ Events: Aand B
@ With vector clocks: VC(A) and VC(B)
@ Operations:
e vC = vcy < Vi veli] = veyli]
o vc < vey & Vi vali] < veyli]
@ V(1 < VCy & ver < vey Adivei] < veali]
@ Causality:

e A— B < vc(A) < vc(B)
e A|l B —(vc(A) < ve(B)) A—(ve(B) < vc(A))



Let’s check!

o A— B < vc(A) < ve(B)
o A|| B« —(vc(A) <vc(B)) A —(ve(B) < vc(A))

100 24 3r

1000

1000~—110M120 1331l 43—

1000~001 1221123




Vector clocks
.

Vector clocks inside Riak

@ Riak:

@ NoSQL database

e Based on "Dynamo" paper ®
@ VC for eventual consistency ®e
@ Help solve conflicts: ‘.v

@ Resolve duplicates
o Detect latest version
o Detect simultaneous updates

https://upload.wikimedia.org/wikipedia/en/8/8e/Riak_distributed_NoSQL_key-value_data_store_logo.png
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Hash table
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Distributed Hash Table (DHT)

key 1

key 2

key 3

key M
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Hash
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Distributed
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Keys distribution

Key

— | DFCD3454

Distributed
Network

Data
Hash
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https://upload.wikimedia.org/wikipedia/commons/9/98/DHT _en.svg
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DHTs everywhere

@ Common since the end of ‘90

@ Base of most NoSQL DBs
@ Advantages:

e Massive storage
e Decentralized
e Fault tolerant

e Scalable

¥ sriak ©

https://upload.wikimedia.org/wikipedia/commons/5/5e/Cassandra logo.svg

http://www.gluster.org/inages/antmascot . png?1432254431
https://upload.wikimedia.org/wikipedia/en/8/8e/Riak_distributed_NoSQL_key-value_
data_store_logo.png

. https://upload.wikimedia.org/wikipedia/commons/6/6d/Transmission_icon.png

X https://upload.wikimedia.org/wikipedia/en/9/9f/UTorrent %2810g0%29.png

https://upload.wikimedia.org/wikipedia/commons/9/9e/Qbittorrent_logo.png
https://upload.wikimedia.org/wikipedia/commons/f/ff/Qbittorrent_mascot.png
https://upload.wikimedia.org/wikipedia/en/d/d5/BitComet_logo.svg
https://upload.wikimedia.org/wikipedia/commons/0/0a/Shareaza. png

https://upload.wikimedia.org/wikipedia/en/d/d6/Logo_of_BearShare_from Website.jpg
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The ring

Ring-organized
m-bits (2™ possible entries)
Ordered clock-wise

Node keeps preceding keys
Nodes hashed by:
e Address (IP?)
e Port
@ Keys:
e User’s hash
e Share key space with nodes

® 6 6 o o

SHA-1 commonly used



Finger table

@ Each node keeps own
@ m-entries

@ (n+2)%2m

@ Where:

@ i —entry number
@ n-node’s number
@ m - hash bits



Finger table

0
@ Each node keeps own ft[o]=5
@ m-entries 2 ft [ 1 ] =6
o (n+2)%2m ft[2]f8
ft[3]=12

@ Where:

e i—entry number 12 4 Jl

@ n-node’s number

o m - hash bits eft[0]=8
@ Here:n=4, m=24 ':i%%}ig

. 4 . =

@ i.e. 2% = 16 entries £1 [3] —1>



One ring to hash them all!

https://upload.wikimedia.org/wikipedia/commons/b/b7/Unico_Anello.png
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@ Having query for k
Q If has k —return it
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@ Having query for k

© If has k —return it

©Q next = max(ft[i] : i € (0;m) A ft[i] < k)
@ Note: ft[i] < k is done on the ring!



Query algorithm

@ Having query for k

Q If has k —return it

©Q next = max(ft[i] : i € (0;m) A ft[i] < k)
@ Note: ft[i] < k is done on the ring!

© If has next - return it

@ Else return first successor
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Query example

@ Node 4 —query 1
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Query example

@ Node 4 —query 1

0 @ Finger tables:
Qn=4
2 o ft[0] = 8
e ft[l] =8
o ft[2] =8
o ft[3] =12
12 4
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Query example

@ Node 4 —query 1

0 @ Finger tables:
Qn=4
2 o ft[0] =8
e ft[l] =8
o ft[2] =8
o ft[3] =12
Q@ n=12
e ft[0]=0
12 4 e ft[l]=0
o ft[2]=0
o ft[3]=4



Chord
°

Query example

@ Node 4 —query 1

0 @ Finger tables:
Qn=4
2 o ft[0] =8
e ft[l] =8
o ft[2] =8
o ft[3] =12
Q@ n=12
e ft[0]=0
12 4 e ft[l]=0
o ft[2]=0
o ft[3]=4
@n=o0
o ft[0] =2
o ftfl] =2
o ft[2] =4
o ft[3]=8
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@ O(logN) memory
@ (Amortized) O(log N) lookup

@ Considered almost O(1)
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Chord
°

Additional notes

O(log N) memory
(Amortized) O(log N) lookup

Considered almost O(1)

Other scenarios:
o Initialization — query for self
e Nodes joining - splitting ranges
o Nodes leaving - merging ranges
@ Nodes crashing = nodes leaving

Failures handing:
o Duplication of data
@ More entries per finger table

o Keeping few predecessors
e Monitoring neighborhood
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@ Split space:
e k affinity groups

e k=~ +/N



Kelips
°

@ Split space:

e k affinity groups

e k=~ +/N
@ Group based on node’s hash
@ Node in a group knows:

o All members of its group
@ One node per other groups
e All group’s hashes



Example - node 2

Mode #3 |

MNode #7 |

Mode #1

Mode #2

|

Mode #6 |

Mode #4 |

MNode #9

Mode #0

Mode #8 |

Mode #5 |




Querying for
key from the same

affinity group



Node #2 querying "yellow" key

Mode #3 |

MNode #7 |

Mode #1

Mode #2

|

Mode #6 |

Mode #4 |

MNode #9

Mode #0

Mode #8 |

Mode #5 |




Kelips
°

It’s here!

http://asalesquyrecruiting.com/wp-content/uploads/2014/03/0h-Hell-Yeah-566x372.png
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Querying for
key from different

affinity group



Node #2 querying "red" key

Mode #3 |

MNode #7 |

Mode #1

Kelips
°

Mode #2

|

Mode #6 |

Mode #4 |

MNode #9

Mode #0

Mode #8 |

Mode #5 |




Node #2 querying "red" key

Mode #3

Mode #6

]

Mode #1

Mode #2

Kelips
°

Mode #4 |

MNode #9

Mode #0

Mode #8 |

Mode #5 |




Node #2 querying "red" key

Mode #3 |

Mode #6

]

Mode #1

Kelips
°

Mode #2

Mode #4 |

MNode #9

Mode #0

Mode #8 |

Mode #5 |




Node #2 querying "red" key

Mode #6

Mode #3 |\

Kelips
°

Mode #4 |

Mode #0

Mode #8 |

Mode #5 |
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Kelips

Additional notes

@ (Amortized) O(1) lookup
@ O(v/N) memory
e Scary?
o Not really...
e N =~ millions — few MBs. ..
@ Other scenarios:
e Initialization — query own affinity group
o Nodes joining — more data replicated
o Nodes leaving - less replication
e Nodes crashing = nodes leaving

@ Failures handing:

@ Monitoring own affinity group
@ Querying others for affinity neighbors
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Cloud @ enterprises
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What next?
°

More to learn...

@ Coursera:
e Cloud computing concepts — part1 & 2
e Cloud computing applications
e Cloud networking
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More to learn...

@ Coursera:
e Cloud computing concepts — part1 & 2
e Cloud computing applications
e Cloud networking
@ Other problems/algorithms:
@ Mutual exclusion
@ Snapshoting
e Multicast problem
e Transactions
@ General concepts:
@ Microservices
e Continuous deployment
e NoSQL
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What next?
°

More to learn...

@ Coursera:
e Cloud computing concepts — part1 & 2
e Cloud computing applications
e Cloud networking
@ Other problems/algorithms:
@ Mutual exclusion
Snapshoting
Multicast problem
Transactions
@ General concepts:
@ Microservices
e Continuous deployment
e NoSQL
@ Hot topics:
o Docker
o NewSQL

http://matthewjamestaylor.com/img/recursive-drawing/pubic-hair.jpg
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Keep learning

Johann Wolfgang von Goethe
What we do not understand we do not possess.




What next?
°

Keep learning

—

Johann Wolfgang von Goethe
What we do not understand we do not possess.

@ Knowledge is power
@ Better understanding

@ Control over environment



What next?
°

Questions?
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