Threading: dos && don’ts

Bartek 'BaSz’ Szurgot
bartek.szurgot@baszerr.eu

2014-11-05

The problem

The problem

The problem
°

Atomic<> Weapons (Herb Sutter)

1dalone Fences
! Il;illoforwn to publish via a widget*:
/] Thread 2

The problem
]

Threads and Shared Variables in C++11 (Hans Boehm)

Lazy initialization and DCL

« Assume X and 1ni td are initially 0/false.

* Consider:

Thread 1 Thread 2

if (linitd) { if (linitd) {
Tock_guard<mutex> _(m); Tock_guard<mutex> _(m);
X = 42; X = 42;
initd = true; initd = true;

} }

read X; read X;

Datarace on 1nitd.
Often works in practice, but not reliable.

@

The problem
]

Threads and Shared Variables in C++11 (Hans Boehm)

Lazy initialization version 2

atomic<bool> initd; // initially false.

TInE X

Thread 1 Thread 2

if (timitd) { if (Yinded) {
Tlock_guard<mutex> _(m); Tock_guard<mutex> _(m);
X = 42; X = 42;
initd = true; initd = true;

} }

read X; read X;

No data race.

@

The problem
°

Every day coding (BaSz)

forgetting to lock mutex before accessing shared
variable, resulting in non-obvious data-daces;
inappropriate use of volatile variables, in pre-cpp11
test code, to synchronize threads; waking up
conditional variable for just one thread, when multiple
threads could be waiting; not adding assertion to
ensure locks are in place, in object implementing
lockable pattern; spawning threads for each task,
instead of providing proper thread pool do do the
work; forgetting to join running thread before program
execution ends; implementing own threading proxy
library, to cover POSIX AP, instead of using already
available at that time boost’s threads; providing
voodoo-like means to exercise stop conditions on a
remote thread, sleeping on a queue access, instead of
providing null-like element and make this one skipped
in a thread’s processing loop; arguing that
incrementing volatile int is de-facto thread-safe on x86
(yes - this was a long time ago, but unfortunately in
this very galaxy...); doing (mostly implicit) locking in
interruption handlers; spawning new threads for each
incoming client connection on simple instant

messaging server; using POSIX threads in C++
without proper RAll-based wrappers; volatiles did
appeared in my threaded test code for some period of
time; doing mutex locking on counters, that could be
instantiated on a per-thread basis, instead of making
them local and just return final value at the end, or
optionally separate atomics with release semantics,
and accumulate logic in thread coordinator loop;
performing long-lasting input-output operations while
having a lock on a resource; using the same promise
object from multiple threads, instead of moving its
ownership to a final destination and not getting
bothered about data races between set_value and
promise’s destructor; being happy that x86 has a
pretty strong memory model (now can’t wait ARMv8
with sequentially-consistent one!); forgetting to add a
try-catch on the whole thread’s body, to ensure
(mostly) clean shutdown instead of nasty
terminate/abort or even compiler-defined aborts
(pre-cppl1 here); locking mutex for too long; checking
if non-recursive mutex is locked by calling try_lock
from the same thread, in assert;

The problem
.

And so...

@ Concurrent programming

e Hard ("Small fixes to prevent blue-screens")
e Attention-demanding ("Free lunch is over")

The problem
.

And so. ..

@ Concurrent programming
e Hard ("Small fixes to prevent blue-screens")
e Attention-demanding ("Free lunch is over")

hardware

Concurrency and modern

X

@ Not that obvious

@ How not to kill performance

PRNG

PRNG
°

Sequential program

1 int count = 4x1000;

> int sum = 0;

3 for(int 1i=0; i<count; ++1i)

4 sum += simulateRandomEnv(); // heavy stuff...

s cout << "average_result: " << sum / count << endl;

PRNG
°

Sequential program

1 int count = 4x1000;

> int sum = 0;

3 for(int 1i=0; i<count; ++1i)

4 sum += simulateRandomEnv(); // heavy stuff...

s cout << "average_result: " << sum / count << endl;

@ How to speed it up?
@ Make it parallel!

PRNG
°

Sequential program

1 int count = 4x1000;

> int sum = 0;

3 for(int 1i=0; i<count; ++1i)

4 sum += simulateRandomEnv(); // heavy stuff...

s cout << "average_result: " << sum / count << endl;

@ How to speed it up?
@ Make it parallel!

@ Each iteration:

o Takes the same time
o Is independent

@ Perfect parallel problem!

PRNG
L]

Parallel program

@ 4 cores - 4 threads
@ 1/4 iterations each
@ 4x speedup!

PRNG
L]

Parallel program

@ 4 cores - 4 threads
@ 1/4 iterations each
@ 4x speedup!

1 int count = 1x1000;

> int sum = 0;

3 for(int i=0; i<count; ++i)

4 sum += simulateRandomEnv(); // heavy stuff...
s // return sum from the thread

Results

@ Timing:
e Parallel way slower. ..
@ More cores == slower execution

Results

@ Timing:

e Parallel way slower. ..

@ More cores == slower execution
@ Profiling:

e Low CPUs load
e Mostly waiting on a single mutex

Results

@ Timing:

e Parallel way slower. ..

@ More cores == slower execution
@ Profiling:

e Low CPUs load

e Mostly waiting on a single mutex
@ Logic:

e Come again?

o What MUTEX?!

Results

@ Timing:

e Parallel way slower. ..

@ More cores == slower execution
@ Profiling:

e Low CPUs load

e Mostly waiting on a single mutex
@ Logic:

e Come again?

o What MUTEX?!
@ Suspect:

simulateRandomEnv/()

random()

POSIX: random() is thread-safe. ..
...Vvia mutex

HplE=zlel A1l processing
thread #2 BEECECE]

thread #3 "b]b'c'kéd "
thread #4 @&

What is wrong?

thread #1 EEIEEEE
thread #2 rocess‘i;'{gi""L
bIo_c_k_e_ql_J
thread #3 “blocked v
thread #4 g

@ Drop problematic random()
@ Add per-thread PRNG

@ Drop problematic random()
@ Add per-thread PRNG

1

10

11

12

13

int simulateRandomEnv ()

{

using Distribution = uniform_int_distribution<long>;
random_device rd;

mt19937 gen{rd()};

Distribution dist{0, RAND_MAX};

auto random = [&]{ return dist(gen); };
int result = 0;

//

// rest of the code remains the same!

//

return result;

Lessons learned

@ Measure:
o Do it always
e Also "the obvious"
e Especially when "you are sure"
@ No excuse for not doing so

Lessons learned

@ Measure:
o Do it always
e Also "the obvious"
e Especially when "you are sure"
@ No excuse for not doing so

@ Avoid shared state:

@ Requires synchronization
e Locking means blocking
e Often kills performance

Lessons learned

@ Measure:
o Do it always
e Also "the obvious"
e Especially when "you are sure"
@ No excuse for not doing so
@ Avoid shared state:
@ Requires synchronization
e Locking means blocking
e Often kills performance
@ Use state-of-art tools:

@ More powerful
@ Known issues addressed

(Not)shared

(Not)shared
.

Source code

1 unsigned a
> unsigned b

o
o o

4+ void threadOne()

s {

s for(int i=0; i<10%1000%1000; ++i)
7 a += computeSth(i);

s}

9

10 void threadTwo()

11 {

12 for(int i=0; i<10+1000%1000; ++i)
13 b += computeSthElse(i);

14}

(Not)shared
.

Source code

1 unsigned a
> unsigned b

o
o o

4 void threadOne()

s {

6 for(int i=0; i<10x1000%1000; ++i)
7 a += computeSth(i);

s}

9

10 void threadTwo()

11 {

12 for(int i=0; i<10x1000%1000; ++i)
13 b += computeSthElse(i);

14 }

@ Data-race free

@ Returns expected results

(Not)shared
°

Measurement results: 4-core

Time vs. threads on 4-core machine

14 +

12 | expectedtime
real time

Time [s]

U]

Threads

°
o
=
©

<
7]

=
<]
=

core

results: 32

Measurement

Time vs. threads on 32-core machine

expected time
real time

14

12

10 r

(28] w

[s] e,

Threads

(Not)shared
°

Variables in memory

1 unsigned a; // used by thread #1
> unsigned b; // used by thread #2

@ Remember Scott’s presentation?

(Not)shared
°

Variables in memory

1 unsigned a; // used by thread #1
> unsigned b; // used by thread #2

@ Remember Scott’s presentation?

@ False sharing is back!

a b
41312(1(4(3/2/1

@ Assume 32-bit
@ Most likely:

@ Consecutive addresses
@ Same cache line

(Not)shared
°

Line-wise

@ Caches are not byte-wise

@ Operate on lines

@ Tens-hundreds of bytes

@ Eg. 64B in my case

@ Operate on aligned addresses

(Not)shared
Line-wise

@ Caches are not byte-wise
@ Operate on lines

@ Tens-hundreds of bytes

@ Eg. 64B in my case

@ Operate on aligned addresses

‘CPU#l cache line: ‘x‘ |a‘b | ‘y‘

IMEMORY: |...|x|...|a|b]...]y]...]

|CPU#2cacheline: |x‘...‘a‘b ‘ |y‘

(Not)shared
°

HOT-line

o

(Not)shared
°

HOT-line

D e

@ What can we do?

(Not)shared
°

Solution #1

@ Sun Tzu: Art of war...
@ ...avoid situations like this! :)

S O

(Not)shared
°

Not that simple

@ Almost sure:

o Arrays
@ Globals in a single file

(Not)shared
°

Not that simple

@ Almost sure:

o Arrays
@ Globals in a single file

@ Probable:

o Globals from different compilation units
e Dynamically allocated memory

(Not)shared
°

Not that simple

@ Almost sure:

o Arrays
@ Globals in a single file

@ Probable:
o Globals from different compilation units
e Dynamically allocated memory

@ Risky business. ..

(Not)shared
°

Solution #2

@ Ensure won't happen
@ One variable - one cache line:

e Alignment
e Padding

(Not)shared
°

Solution #2

@ Ensure won't happen
@ One variable - one cache line:

e Alignment
e Padding

CPU#1 cache line: |a|...|x

[—
]

MEMORY:|...|a|...|x|b]..

——
e

CPU#2 cache line: |b | ...

(Not)shared
°

Helper template

1 template<typename T, unsigned Align=64>
> struct alignas(Align) Cacheline

ER
4 static_assert(std::is_pod<T>::value,
5 "cannot_guarantee_layout _for_non-PODs");

6 T data_;
7 // NOTE: auto-padded due to alignment!
s 1

(Not)shared

Before the fix: 4-core

Time vs. threads on 4-core machine

14 L 4

12 | expectedtime
real time

Time [s]

Threads

(Not)shared

Measuring fix: 4-core

Time vs. threads on 4-core machine

14 L 1

12 | expectedtime J
real time

08 R

Time [s]

06 R

04 | 1

()]
p

F
02 B4

Threads

°
o
=
©

<
7]

=
<]
=

32-core

Before the fix

Time vs. threads on 32-core machine

expected time

real time

12
10

[s] e,

Threads

°
o
=
©

<
7]

=
<]
=

32-core

Measuring fix

Time vs. threads on 32-core machine

expected time

real time

12

10

[s] e,

Threads

(Not)shared

Lessons learned

@ Measure:

Do it always

Also "the obvious"

Especially when "you are sure"
No excuse for not doing so

(Not)shared

Lessons learned

@ Measure:

Do it always

Also "the obvious"

Especially when "you are sure"

e No excuse for not doing so
@ Think about caches:

o Great speed improvement
Worst-case scenario - cache miss
Not fully transparent
In-CPU cache coherency protocols
More CPUs == bigger impact

Atomics

Atomics
.

"I know my hardware!" case

1 int g_counter = 0;

s void threadCall() // called from multiple threads

+ A

5 for(int i=0; i<1x1000x1000; ++i)
6 ++g_counter;

7}

@ Good...?
@ Bad...?

@ Ugly...?

Atomics
.

"I know my hardware!" case

1 int g_counter = 0;

s void threadCall() // called from multiple threads
o A
5 for(int i=0; i<1x1000%1000; ++i)

6 ++g_counter;
7}
@ Results for 4 threads:
5 e 2000000 -232/10000
® Good... o 4000000 - 526,/10000
@ Bad...? e 3000000 -9242/10000
@ Ugly...? @ Right 5% of times

@ Smells like a bug!

Atomics
°

"I know my compiler!" case

1 volatile int g_counter = 0; // fix

5 void threadCall() // called from multiple threads

+ A

5 for(int i=0; i<1x1000%x1000; ++i)
6 ++g_counter;

7}

@ Good...?
@ Bad...?

@ Ugly...?

Atomics
°

"I know my compiler!" case

1 volatile int g_counter = 0; // fix

5 void threadCall() // called from multiple threads

+ A

5 for(int i=0; i<1x1000%x1000; ++i)
6 ++g_counter;

7}

@ Some results on 4 threads:
e 1000002 - 4/1000

?
@ Good..." o 1000060 - 8/1000
e Bad...? o 1000000 - 69/1000
@ Ugly...? @ Right 0 (% of) times

@ Closest: 1871882/4000000

Atomics
°

The Only Way(tm)

1 std::atomic<int> g_counter(0);

3 void threadCall() // called from multiple threads

o A

5 for(int i=0; i<1x1000x1000; ++1i)
6 ++g_counter;

7}

@ Valid C++11

Atomics
°

The Only Way(tm)

1 std::atomic<int> g_counter(0);

5 void threadCall() // called from multiple threads
o A

5 for(int i=0; i<1x1000x1000; ++1i)

6 ++g_counter;

@ Valid C++11

@ Using 4 threads
@ Result: 4000000
@ Always - lol!!l11

Atomics
°

Think before you code

. std::atomic<int> g_counter(0); // shared

3 void threadCall() // called from multiple threads
« A

5 int counter = 0; // local

6 for(int i=0; i<1+1000x1000; ++i)

7 ++counter;

8 g_counter += counter; // single write
s}

@ Can be an option?
@ WAY faster

Atomics

Volatile rescue mission

@ Volatile and lost writes

@ Missed optimizations

@ Single-instruction summing failed

@ How about signaling?

Atomics
.

Volatile flags maybe?

1 volatile bool startedl = false;

> volatile bool started2 = false;

3

4 void threadl()

s {

6 startedl = true;

7 if(not started2)

8 std::cout << "thread_1_was_first\n";
o }

10

11 void thread2()

12

13 started2 = true;

14 if(not startedl)

15 std::cout << "thread_2_was_first\n";

Atomics
°

Results

@ Most of the time - fine
@ 6/10000 times:

Atomics
°

Results

@ Most of the time - fine
@ 6/10000 times:

thread 1 was first
thread 2 was first

Atomics
°

Results

@ Most of the time - fine
@ 6/10000 times:

thread 1 was first
thread 2 was first

@ 0.06% error rate
@ What really happened?

Zoom in — original code

1 volatile bool startedl
> volatile bool started2

4+ void threadl()

s A

o}

startedl = true; //
if(not started2) //
{ /x some action x/ }

false;
false;

memory write
memory read

Atomics

Atomics
.

Zoom in — reordered

1 volatile bool startedl = false;

> volatile bool started2 = false;

3

4 void threadl()

s A{

6 if(not started2) // memory read
7 { /x some action */ }

8 startedl = true; // memory write (!)

Atomics

Sequential consistency

@ Reordering by:

e Compiler
e Hardware

@ Do they break programs?

Atomics

Sequential consistency

@ Reordering by:

e Compiler

e Hardware
@ Do they break programs?
@ Restrictions:

o No observables effects
o As-if single-threaded

Atomics

Sequential consistency

@ Reordering by:
e Compiler
e Hardware
@ Do they break programs?
@ Restrictions:
o No observables effects
o As-if single-threaded
@ Explicit marking shared elements:

e Atomics
@ Mutex-protected sections

Atomics

Sequential consistency

Reordering by:
e Compiler
e Hardware

Do they break programs?
Restrictions:

o No observables effects

o As-if single-threaded
Explicit marking shared elements:

e Atomics
@ Mutex-protected sections

Data-race free (DRF) code is a must!
SC for DRF

Atomics

Lessons learned

@ Never use volatiles for threading

@ | mean it!

@ Synchronize using:
e Atomics
e Mutexes

@ Conditionals

Atomics

Lessons learned

@ Never use volatiles for threading

@ | mean it!

@ Synchronize using:
e Atomics
e Mutexes

e Conditionals
@ Mind sequential consistency (SC)

o Write data-race free (DRF) code
o Weird problems if you don’t
o Reproducibility issues otherwise

Atomics

Lessons learned

Never use volatiles for threading

| mean it!
Synchronize using:
e Atomics
e Mutexes
e Conditionals
Mind sequential consistency (SC)
o Write data-race free (DRF) code
o Weird problems if you don’t
o Reproducibility issues otherwise
@ Mind the efficiency:
o Prefer local over shared
@ Synchronize when must

Atomics

Lessons learned

Never use volatiles for threading

| mean it!
Synchronize using:
e Atomics
e Mutexes
e Conditionals
Mind sequential consistency (SC)
o Write data-race free (DRF) code
o Weird problems if you don’t
o Reproducibility issues otherwise
@ Mind the efficiency:
o Prefer local over shared
@ Synchronize when must

Experiment and verify
Do the code review

Summary

Summary

Dos && don’ts

@ Rule No.1:
@ measure
o MEASURE
o M-E-A-S-U-R-E k

Summary
°

Dos && don’ts

@ Rule No.1:
@ measure
o MEASURE
e M-E-A-S-U-R-E
@ Be cache-aware:
o Keep non-shared data in separate cache lines
o Prefer local over shared

Summary
°

Dos && don’ts

@ Rule No.1:
@ measure
o MEASURE
e M-E-A-S-U-R-E
@ Be cache-aware:
o Keep non-shared data in separate cache lines
o Prefer local over shared
@ Synchronize properly:
e Ensure code is data-race free (DRF)

o NEVER use volatiles for sharing
e Benefit from sequential consistency (SC)

Summary
°

Dos && don’ts

@ Rule No.1:
@ measure
o MEASURE
e M-E-A-S-U-R-E
@ Be cache-aware:
o Keep non-shared data in separate cache lines
o Prefer local over shared
@ Synchronize properly:
e Ensure code is data-race free (DRF)

o NEVER use volatiles for sharing
e Benefit from sequential consistency (SC)

@ Homework:
e Read C++11 memory model
o Read multi-threaded executions and data races
@ x86* vs. ARM and IA-64

Summary
]

More materials

@ Something to watch:

e Threads and shared variables in C++11,
Hans Boehm,
available on Channel9
e Atomic<> Weapons,
Herb Sutter,
available on Channel9
@ CPU Caches and Why You care,
Scott Meyers,
available on Code::Dive :)

Summary
]

More materials

@ Something to watch:

e Threads and shared variables in C++11,
Hans Boehm,
available on Channel9

e Atomic<> Weapons,
Herb Sutter,
available on Channel9

@ CPU Caches and Why You care,
Scott Meyers,
available on Code::Dive :)

@ Something to read:
e C++ Concurrency in action: practical multithreading,
Anthony Williams

Summary
]

More materials

@ Something to watch:

e Threads and shared variables in C++11,
Hans Boehm,
available on Channel9

e Atomic<> Weapons,
Herb Sutter,
available on Channel9

@ CPU Caches and Why You care,
Scott Meyers,
available on Code::Dive :)

@ Something to read:

e C++ Concurrency in action: practical multithreading,
Anthony Williams

@ The Hitchhiker’s Guide to the Galaxy,
Douglas Adams

Summary
°

Questions?

	The problem
	PRNG
	(Not)shared
	Atomics
	Summary

