
The problem PRNG (Not)shared Atomics Summary

Threading: dos && don’ts

Bartek ’BaSz’ Szurgot

bartek.szurgot@baszerr.eu

2014-11-05

The problem PRNG (Not)shared Atomics Summary

The problem PRNG (Not)shared Atomics Summary

The problem

The problem PRNG (Not)shared Atomics Summary

Atomic<> Weapons (Herb Sutter)

The problem PRNG (Not)shared Atomics Summary

Threads and Shared Variables in C++11 (Hans Boehm)

The problem PRNG (Not)shared Atomics Summary

Threads and Shared Variables in C++11 (Hans Boehm)

The problem PRNG (Not)shared Atomics Summary

Every day coding (BaSz)

forgetting to lock mutex before accessing shared
variable, resulting in non-obvious data-daces;
inappropriate use of volatile variables, in pre-cpp11
test code, to synchronize threads; waking up
conditional variable for just one thread, when multiple
threads could be waiting; not adding assertion to
ensure locks are in place, in object implementing
lockable pattern; spawning threads for each task,
instead of providing proper thread pool do do the
work; forgetting to join running thread before program
execution ends; implementing own threading proxy
library, to cover POSIX API, instead of using already
available at that time boost’s threads; providing
voodoo-like means to exercise stop conditions on a
remote thread, sleeping on a queue access, instead of
providing null-like element and make this one skipped
in a thread’s processing loop; arguing that
incrementing volatile int is de-facto thread-safe on x86
(yes - this was a long time ago, but unfortunately in
this very galaxy...); doing (mostly implicit) locking in
interruption handlers; spawning new threads for each
incoming client connection on simple instant

messaging server; using POSIX threads in C++
without proper RAII-based wrappers; volatiles did
appeared in my threaded test code for some period of
time; doing mutex locking on counters, that could be
instantiated on a per-thread basis, instead of making
them local and just return final value at the end, or
optionally separate atomics with release semantics,
and accumulate logic in thread coordinator loop;
performing long-lasting input-output operations while
having a lock on a resource; using the same promise
object from multiple threads, instead of moving its
ownership to a final destination and not getting
bothered about data races between set_value and
promise’s destructor; being happy that x86 has a
pretty strong memory model (now can’t wait ARMv8
with sequentially-consistent one!); forgetting to add a
try-catch on the whole thread’s body, to ensure
(mostly) clean shutdown instead of nasty
terminate/abort or even compiler-defined aborts
(pre-cpp11 here); locking mutex for too long; checking
if non-recursive mutex is locked by calling try_lock
from the same thread, in assert;

The problem PRNG (Not)shared Atomics Summary

And so. . .

Concurrent programming

Hard ("Small fixes to prevent blue-screens")
Attention-demanding ("Free lunch is over")

Concurrency and modern hardware

Not that obvious

How not to kill performance

The problem PRNG (Not)shared Atomics Summary

And so. . .

Concurrent programming

Hard ("Small fixes to prevent blue-screens")
Attention-demanding ("Free lunch is over")

Concurrency and modern hardware

Not that obvious

How not to kill performance

The problem PRNG (Not)shared Atomics Summary

PRNG

The problem PRNG (Not)shared Atomics Summary

Sequential program

1 int count = 4*1000;
2 int sum = 0;
3 for(int i=0; i<count; ++i)
4 sum += simulateRandomEnv(); // heavy stuff...
5 cout << "average result: " << sum / count << endl;

How to speed it up?

Make it parallel!

Each iteration:

Takes the same time
Is independent

Perfect parallel problem!

The problem PRNG (Not)shared Atomics Summary

Sequential program

1 int count = 4*1000;
2 int sum = 0;
3 for(int i=0; i<count; ++i)
4 sum += simulateRandomEnv(); // heavy stuff...
5 cout << "average result: " << sum / count << endl;

How to speed it up?

Make it parallel!

Each iteration:

Takes the same time
Is independent

Perfect parallel problem!

The problem PRNG (Not)shared Atomics Summary

Sequential program

1 int count = 4*1000;
2 int sum = 0;
3 for(int i=0; i<count; ++i)
4 sum += simulateRandomEnv(); // heavy stuff...
5 cout << "average result: " << sum / count << endl;

How to speed it up?

Make it parallel!

Each iteration:

Takes the same time
Is independent

Perfect parallel problem!

The problem PRNG (Not)shared Atomics Summary

Parallel program

4 cores – 4 threads

1/4 iterations each

4x speedup!

1 int count = 1*1000;
2 int sum = 0;
3 for(int i=0; i<count; ++i)
4 sum += simulateRandomEnv(); // heavy stuff...
5 // return sum from the thread

The problem PRNG (Not)shared Atomics Summary

Parallel program

4 cores – 4 threads

1/4 iterations each

4x speedup!

1 int count = 1*1000;
2 int sum = 0;
3 for(int i=0; i<count; ++i)
4 sum += simulateRandomEnv(); // heavy stuff...
5 // return sum from the thread

The problem PRNG (Not)shared Atomics Summary

Results

Timing:

Parallel way slower. . .
More cores == slower execution

Profiling:

Low CPUs load
Mostly waiting on a single mutex

Logic:

Come again?
What MUTEX?!

Suspect:

simulateRandomEnv()
random()
POSIX: random() is thread-safe. . .
. . . via mutex

The problem PRNG (Not)shared Atomics Summary

Results

Timing:

Parallel way slower. . .
More cores == slower execution

Profiling:

Low CPUs load
Mostly waiting on a single mutex

Logic:

Come again?
What MUTEX?!

Suspect:

simulateRandomEnv()
random()
POSIX: random() is thread-safe. . .
. . . via mutex

The problem PRNG (Not)shared Atomics Summary

Results

Timing:

Parallel way slower. . .
More cores == slower execution

Profiling:

Low CPUs load
Mostly waiting on a single mutex

Logic:

Come again?
What MUTEX?!

Suspect:

simulateRandomEnv()
random()
POSIX: random() is thread-safe. . .
. . . via mutex

The problem PRNG (Not)shared Atomics Summary

Results

Timing:

Parallel way slower. . .
More cores == slower execution

Profiling:

Low CPUs load
Mostly waiting on a single mutex

Logic:

Come again?
What MUTEX?!

Suspect:

simulateRandomEnv()
random()
POSIX: random() is thread-safe. . .
. . . via mutex

The problem PRNG (Not)shared Atomics Summary

What is wrong?

The problem PRNG (Not)shared Atomics Summary

What is wrong?

The problem PRNG (Not)shared Atomics Summary

Fix

Drop problematic random()

Add per-thread PRNG

1 int simulateRandomEnv()
2 {
3 using Distribution = uniform_int_distribution<long>;
4 random_device rd;
5 mt19937 gen{rd()};
6 Distribution dist{0, RAND_MAX};
7 auto random = [&]{ return dist(gen); };
8 int result = 0;
9 //

10 // rest of the code remains the same!
11 //
12 return result;
13 }

The problem PRNG (Not)shared Atomics Summary

Fix

Drop problematic random()

Add per-thread PRNG

1 int simulateRandomEnv()
2 {
3 using Distribution = uniform_int_distribution<long>;
4 random_device rd;
5 mt19937 gen{rd()};
6 Distribution dist{0, RAND_MAX};
7 auto random = [&]{ return dist(gen); };
8 int result = 0;
9 //

10 // rest of the code remains the same!
11 //
12 return result;
13 }

The problem PRNG (Not)shared Atomics Summary

Lessons learned

Measure:

Do it always
Also "the obvious"
Especially when "you are sure"
No excuse for not doing so

Avoid shared state:

Requires synchronization
Locking means blocking
Often kills performance

Use state-of-art tools:

More powerful
Known issues addressed

The problem PRNG (Not)shared Atomics Summary

Lessons learned

Measure:

Do it always
Also "the obvious"
Especially when "you are sure"
No excuse for not doing so

Avoid shared state:

Requires synchronization
Locking means blocking
Often kills performance

Use state-of-art tools:

More powerful
Known issues addressed

The problem PRNG (Not)shared Atomics Summary

Lessons learned

Measure:

Do it always
Also "the obvious"
Especially when "you are sure"
No excuse for not doing so

Avoid shared state:

Requires synchronization
Locking means blocking
Often kills performance

Use state-of-art tools:

More powerful
Known issues addressed

The problem PRNG (Not)shared Atomics Summary

(Not)shared

The problem PRNG (Not)shared Atomics Summary

Source code

1 unsigned a = 0;
2 unsigned b = 0;
3

4 void threadOne()
5 {
6 for(int i=0; i<10*1000*1000; ++i)
7 a += computeSth(i);
8 }
9

10 void threadTwo()
11 {
12 for(int i=0; i<10*1000*1000; ++i)
13 b += computeSthElse(i);
14 }

Data-race free

Returns expected results

The problem PRNG (Not)shared Atomics Summary

Source code

1 unsigned a = 0;
2 unsigned b = 0;
3

4 void threadOne()
5 {
6 for(int i=0; i<10*1000*1000; ++i)
7 a += computeSth(i);
8 }
9

10 void threadTwo()
11 {
12 for(int i=0; i<10*1000*1000; ++i)
13 b += computeSthElse(i);
14 }

Data-race free

Returns expected results

The problem PRNG (Not)shared Atomics Summary

Measurement results: 4-core

The problem PRNG (Not)shared Atomics Summary

Measurement results: 32-core

The problem PRNG (Not)shared Atomics Summary

Variables in memory

1 unsigned a; // used by thread #1
2 unsigned b; // used by thread #2

Remember Scott’s presentation?

False sharing is back!

Assume 32-bit

Most likely:

Consecutive addresses
Same cache line

The problem PRNG (Not)shared Atomics Summary

Variables in memory

1 unsigned a; // used by thread #1
2 unsigned b; // used by thread #2

Remember Scott’s presentation?

False sharing is back!

Assume 32-bit

Most likely:

Consecutive addresses
Same cache line

The problem PRNG (Not)shared Atomics Summary

Line-wise

Caches are not byte-wise

Operate on lines

Tens-hundreds of bytes

Eg. 64B in my case

Operate on aligned addresses

The problem PRNG (Not)shared Atomics Summary

Line-wise

Caches are not byte-wise

Operate on lines

Tens-hundreds of bytes

Eg. 64B in my case

Operate on aligned addresses

The problem PRNG (Not)shared Atomics Summary

HOT-line

What can we do?

The problem PRNG (Not)shared Atomics Summary

HOT-line

What can we do?

The problem PRNG (Not)shared Atomics Summary

Solution #1

Sun Tzu: Art of war. . .
. . . avoid situations like this! :)

The problem PRNG (Not)shared Atomics Summary

Not that simple

Almost sure:

Arrays
Globals in a single file

Probable:

Globals from different compilation units
Dynamically allocated memory

Risky business. . .

The problem PRNG (Not)shared Atomics Summary

Not that simple

Almost sure:

Arrays
Globals in a single file

Probable:

Globals from different compilation units
Dynamically allocated memory

Risky business. . .

The problem PRNG (Not)shared Atomics Summary

Not that simple

Almost sure:

Arrays
Globals in a single file

Probable:

Globals from different compilation units
Dynamically allocated memory

Risky business. . .

The problem PRNG (Not)shared Atomics Summary

Solution #2

Ensure won’t happen

One variable – one cache line:

Alignment
Padding

The problem PRNG (Not)shared Atomics Summary

Solution #2

Ensure won’t happen

One variable – one cache line:

Alignment
Padding

The problem PRNG (Not)shared Atomics Summary

Helper template

1 template<typename T, unsigned Align=64>
2 struct alignas(Align) CacheLine
3 {
4 static_assert(std::is_pod<T>::value,
5 "cannot guarantee layout for non-PODs");
6 T data_;
7 // NOTE: auto-padded due to alignment!
8 };

The problem PRNG (Not)shared Atomics Summary

Before the fix: 4-core

The problem PRNG (Not)shared Atomics Summary

Measuring fix: 4-core

The problem PRNG (Not)shared Atomics Summary

Before the fix: 32-core

The problem PRNG (Not)shared Atomics Summary

Measuring fix: 32-core

The problem PRNG (Not)shared Atomics Summary

Lessons learned

Measure:

Do it always
Also "the obvious"
Especially when "you are sure"
No excuse for not doing so

Think about caches:

Great speed improvement
Worst-case scenario – cache miss
Not fully transparent
In-CPU cache coherency protocols
More CPUs == bigger impact

The problem PRNG (Not)shared Atomics Summary

Lessons learned

Measure:

Do it always
Also "the obvious"
Especially when "you are sure"
No excuse for not doing so

Think about caches:

Great speed improvement
Worst-case scenario – cache miss
Not fully transparent
In-CPU cache coherency protocols
More CPUs == bigger impact

The problem PRNG (Not)shared Atomics Summary

Atomics

The problem PRNG (Not)shared Atomics Summary

"I know my hardware!" case

1 int g_counter = 0;
2

3 void threadCall() // called from multiple threads
4 {
5 for(int i=0; i<1*1000*1000; ++i)
6 ++g_counter;
7 }

Good. . . ?

Bad. . . ?

Ugly. . . ?

Results for 4 threads:

2000000 – 232/10000
4000000 – 526/10000
3000000 – 9242/10000

Right 5% of times

Smells like a bug!

The problem PRNG (Not)shared Atomics Summary

"I know my hardware!" case

1 int g_counter = 0;
2

3 void threadCall() // called from multiple threads
4 {
5 for(int i=0; i<1*1000*1000; ++i)
6 ++g_counter;
7 }

Good. . . ?

Bad. . . ?

Ugly. . . ?

Results for 4 threads:

2000000 – 232/10000
4000000 – 526/10000
3000000 – 9242/10000

Right 5% of times

Smells like a bug!

The problem PRNG (Not)shared Atomics Summary

"I know my compiler!" case

1 volatile int g_counter = 0; // fix
2

3 void threadCall() // called from multiple threads
4 {
5 for(int i=0; i<1*1000*1000; ++i)
6 ++g_counter;
7 }

Good. . . ?

Bad. . . ?

Ugly. . . ?

Some results on 4 threads:

1000002 – 4/1000
1000060 – 8/1000
1000000 – 69/1000

Right 0 (% of) times

Closest: 1871882/4000000

The problem PRNG (Not)shared Atomics Summary

"I know my compiler!" case

1 volatile int g_counter = 0; // fix
2

3 void threadCall() // called from multiple threads
4 {
5 for(int i=0; i<1*1000*1000; ++i)
6 ++g_counter;
7 }

Good. . . ?

Bad. . . ?

Ugly. . . ?

Some results on 4 threads:

1000002 – 4/1000
1000060 – 8/1000
1000000 – 69/1000

Right 0 (% of) times

Closest: 1871882/4000000

The problem PRNG (Not)shared Atomics Summary

The Only Way(tm)

1 std::atomic<int> g_counter(0);
2

3 void threadCall() // called from multiple threads
4 {
5 for(int i=0; i<1*1000*1000; ++i)
6 ++g_counter;
7 }

Valid C++11

Using 4 threads

Result: 4000000

Always – lol!!!11

The problem PRNG (Not)shared Atomics Summary

The Only Way(tm)

1 std::atomic<int> g_counter(0);
2

3 void threadCall() // called from multiple threads
4 {
5 for(int i=0; i<1*1000*1000; ++i)
6 ++g_counter;
7 }

Valid C++11

Using 4 threads

Result: 4000000

Always – lol!!!11

The problem PRNG (Not)shared Atomics Summary

Think before you code

1 std::atomic<int> g_counter(0); // shared
2

3 void threadCall() // called from multiple threads
4 {
5 int counter = 0; // local
6 for(int i=0; i<1*1000*1000; ++i)
7 ++counter;
8 g_counter += counter; // single write
9 }

Can be an option?

WAY faster

The problem PRNG (Not)shared Atomics Summary

Volatile rescue mission

Volatile and lost writes

Missed optimizations

Single-instruction summing failed

How about signaling?

The problem PRNG (Not)shared Atomics Summary

Volatile flags maybe?

1 volatile bool started1 = false;
2 volatile bool started2 = false;
3

4 void thread1()
5 {
6 started1 = true;
7 if(not started2)
8 std::cout << "thread 1 was first\n";
9 }

10

11 void thread2()
12 {
13 started2 = true;
14 if(not started1)
15 std::cout << "thread 2 was first\n";
16 }

The problem PRNG (Not)shared Atomics Summary

Results

Most of the time – fine

6/10000 times:

thread 1 was first
thread 2 was first

0.06% error rate

What really happened?

The problem PRNG (Not)shared Atomics Summary

Results

Most of the time – fine

6/10000 times:

thread 1 was first
thread 2 was first

0.06% error rate

What really happened?

The problem PRNG (Not)shared Atomics Summary

Results

Most of the time – fine

6/10000 times:

thread 1 was first
thread 2 was first

0.06% error rate

What really happened?

The problem PRNG (Not)shared Atomics Summary

Zoom in – original code

1 volatile bool started1 = false;
2 volatile bool started2 = false;
3

4 void thread1()
5 {
6 started1 = true; // memory write
7 if(not started2) // memory read
8 { /* some action */ }
9 }

The problem PRNG (Not)shared Atomics Summary

Zoom in – reordered

1 volatile bool started1 = false;
2 volatile bool started2 = false;
3

4 void thread1()
5 {
6 if(not started2) // memory read
7 { /* some action */ }
8 started1 = true; // memory write (!)
9 }

The problem PRNG (Not)shared Atomics Summary

Sequential consistency

Reordering by:

Compiler
Hardware

Do they break programs?

Restrictions:

No observables effects
As-if single-threaded

Explicit marking shared elements:

Atomics
Mutex-protected sections

Data-race free (DRF) code is a must!

SC for DRF

The problem PRNG (Not)shared Atomics Summary

Sequential consistency

Reordering by:

Compiler
Hardware

Do they break programs?

Restrictions:

No observables effects
As-if single-threaded

Explicit marking shared elements:

Atomics
Mutex-protected sections

Data-race free (DRF) code is a must!

SC for DRF

The problem PRNG (Not)shared Atomics Summary

Sequential consistency

Reordering by:

Compiler
Hardware

Do they break programs?

Restrictions:

No observables effects
As-if single-threaded

Explicit marking shared elements:

Atomics
Mutex-protected sections

Data-race free (DRF) code is a must!

SC for DRF

The problem PRNG (Not)shared Atomics Summary

Sequential consistency

Reordering by:

Compiler
Hardware

Do they break programs?

Restrictions:

No observables effects
As-if single-threaded

Explicit marking shared elements:

Atomics
Mutex-protected sections

Data-race free (DRF) code is a must!

SC for DRF

The problem PRNG (Not)shared Atomics Summary

Lessons learned

Never use volatiles for threading

I mean it!

Synchronize using:
Atomics
Mutexes
Conditionals

Mind sequential consistency (SC)
Write data-race free (DRF) code
Weird problems if you don’t
Reproducibility issues otherwise

Mind the efficiency:
Prefer local over shared
Synchronize when must

Experiment and verify

Do the code review

The problem PRNG (Not)shared Atomics Summary

Lessons learned

Never use volatiles for threading

I mean it!

Synchronize using:
Atomics
Mutexes
Conditionals

Mind sequential consistency (SC)
Write data-race free (DRF) code
Weird problems if you don’t
Reproducibility issues otherwise

Mind the efficiency:
Prefer local over shared
Synchronize when must

Experiment and verify

Do the code review

The problem PRNG (Not)shared Atomics Summary

Lessons learned

Never use volatiles for threading

I mean it!

Synchronize using:
Atomics
Mutexes
Conditionals

Mind sequential consistency (SC)
Write data-race free (DRF) code
Weird problems if you don’t
Reproducibility issues otherwise

Mind the efficiency:
Prefer local over shared
Synchronize when must

Experiment and verify

Do the code review

The problem PRNG (Not)shared Atomics Summary

Lessons learned

Never use volatiles for threading

I mean it!

Synchronize using:
Atomics
Mutexes
Conditionals

Mind sequential consistency (SC)
Write data-race free (DRF) code
Weird problems if you don’t
Reproducibility issues otherwise

Mind the efficiency:
Prefer local over shared
Synchronize when must

Experiment and verify

Do the code review

The problem PRNG (Not)shared Atomics Summary

Summary

The problem PRNG (Not)shared Atomics Summary

Dos && don’ts

Rule No.1:

measure
MEASURE
M-E-A-S-U-R-E

Be cache-aware:

Keep non-shared data in separate cache lines
Prefer local over shared

Synchronize properly:

Ensure code is data-race free (DRF)
NEVER use volatiles for sharing
Benefit from sequential consistency (SC)

Homework:

Read C++11 memory model
Read multi-threaded executions and data races
x86* vs. ARM and IA-64

The problem PRNG (Not)shared Atomics Summary

Dos && don’ts

Rule No.1:

measure
MEASURE
M-E-A-S-U-R-E

Be cache-aware:

Keep non-shared data in separate cache lines
Prefer local over shared

Synchronize properly:

Ensure code is data-race free (DRF)
NEVER use volatiles for sharing
Benefit from sequential consistency (SC)

Homework:

Read C++11 memory model
Read multi-threaded executions and data races
x86* vs. ARM and IA-64

The problem PRNG (Not)shared Atomics Summary

Dos && don’ts

Rule No.1:

measure
MEASURE
M-E-A-S-U-R-E

Be cache-aware:

Keep non-shared data in separate cache lines
Prefer local over shared

Synchronize properly:

Ensure code is data-race free (DRF)
NEVER use volatiles for sharing
Benefit from sequential consistency (SC)

Homework:

Read C++11 memory model
Read multi-threaded executions and data races
x86* vs. ARM and IA-64

The problem PRNG (Not)shared Atomics Summary

Dos && don’ts

Rule No.1:

measure
MEASURE
M-E-A-S-U-R-E

Be cache-aware:

Keep non-shared data in separate cache lines
Prefer local over shared

Synchronize properly:

Ensure code is data-race free (DRF)
NEVER use volatiles for sharing
Benefit from sequential consistency (SC)

Homework:

Read C++11 memory model
Read multi-threaded executions and data races
x86* vs. ARM and IA-64

The problem PRNG (Not)shared Atomics Summary

More materials

Something to watch:

Threads and shared variables in C++11,
Hans Boehm,
available on Channel9
Atomic<> Weapons,
Herb Sutter,
available on Channel9
CPU Caches and Why You care,
Scott Meyers,
available on Code::Dive :)

Something to read:

C++ Concurrency in action: practical multithreading,
Anthony Williams
The Hitchhiker’s Guide to the Galaxy,
Douglas Adams

The problem PRNG (Not)shared Atomics Summary

More materials

Something to watch:

Threads and shared variables in C++11,
Hans Boehm,
available on Channel9
Atomic<> Weapons,
Herb Sutter,
available on Channel9
CPU Caches and Why You care,
Scott Meyers,
available on Code::Dive :)

Something to read:

C++ Concurrency in action: practical multithreading,
Anthony Williams

The Hitchhiker’s Guide to the Galaxy,
Douglas Adams

The problem PRNG (Not)shared Atomics Summary

More materials

Something to watch:

Threads and shared variables in C++11,
Hans Boehm,
available on Channel9
Atomic<> Weapons,
Herb Sutter,
available on Channel9
CPU Caches and Why You care,
Scott Meyers,
available on Code::Dive :)

Something to read:

C++ Concurrency in action: practical multithreading,
Anthony Williams
The Hitchhiker’s Guide to the Galaxy,
Douglas Adams

The problem PRNG (Not)shared Atomics Summary

Questions?

?

	The problem
	PRNG
	(Not)shared
	Atomics
	Summary

