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Every day coding (BaSz)

forgetting to lock mutex before accessing shared
variable, resulting in non-obvious data-daces;
inappropriate use of volatile variables, in pre-cpp11
test code, to synchronize threads; waking up
conditional variable for just one thread, when multiple
threads could be waiting; not adding assertion to
ensure locks are in place, in object implementing
lockable pattern; spawning threads for each task,
instead of providing proper thread pool do do the
work; forgetting to join running thread before program
execution ends; implementing own threading proxy
library, to cover POSIX API, instead of using already
available at that time boost’s threads; providing
voodoo-like means to exercise stop conditions on a
remote thread, sleeping on a queue access, instead of
providing null-like element and make this one skipped
in a thread’s processing loop; arguing that
incrementing volatile int is de-facto thread-safe on x86
(yes - this was a long time ago, but unfortunately in
this very galaxy...); doing (mostly implicit) locking in
interruption handlers; spawning new threads for each
incoming client connection on simple instant

messaging server; using POSIX threads in C++
without proper RAII-based wrappers; volatiles did
appeared in my threaded test code for some period of
time; doing mutex locking on counters, that could be
instantiated on a per-thread basis, instead of making
them local and just return final value at the end, or
optionally separate atomics with release semantics,
and accumulate logic in thread coordinator loop;
performing long-lasting input-output operations while
having a lock on a resource; using the same promise
object from multiple threads, instead of moving its
ownership to a final destination and not getting
bothered about data races between set_value and
promise’s destructor; being happy that x86 has a
pretty strong memory model (now can’t wait ARMv8
with sequentially-consistent one!); forgetting to add a
try-catch on the whole thread’s body, to ensure
(mostly) clean shutdown instead of nasty
terminate/abort or even compiler-defined aborts
(pre-cpp11 here); locking mutex for too long; checking
if non-recursive mutex is locked by calling try_lock
from the same thread, in assert;
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And so. . .

Concurrent programming

Hard ("Small fixes to prevent blue-screens")
Attention-demanding ("Free lunch is over")

Concurrency and modern hardware

Not that obvious

How not to kill performance
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Sequential program

1 int count = 4*1000;
2 int sum = 0;
3 for(int i=0; i<count; ++i)
4 sum += simulateRandomEnv(); // heavy stuff...
5 cout << "average result: " << sum / count << endl;

How to speed it up?

Make it parallel!

Each iteration:

Takes the same time
Is independent

Perfect parallel problem!
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Parallel program

4 cores – 4 threads

1/4 iterations each

4x speedup!

1 int count = 1*1000;
2 int sum = 0;
3 for(int i=0; i<count; ++i)
4 sum += simulateRandomEnv(); // heavy stuff...
5 // return sum from the thread
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Results

Timing:

Parallel way slower. . .
More cores == slower execution

Profiling:

Low CPUs load
Mostly waiting on a single mutex

Logic:

Come again?
What MUTEX?!

Suspect:

simulateRandomEnv()
random()
POSIX: random() is thread-safe. . .
. . . via mutex
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Fix

Drop problematic random()

Add per-thread PRNG

1 int simulateRandomEnv()
2 {
3 using Distribution = uniform_int_distribution<long>;
4 random_device rd;
5 mt19937 gen{rd()};
6 Distribution dist{0, RAND_MAX};
7 auto random = [&]{ return dist(gen); };
8 int result = 0;
9 //

10 // rest of the code remains the same!
11 //
12 return result;
13 }
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Lessons learned

Measure:

Do it always
Also "the obvious"
Especially when "you are sure"
No excuse for not doing so

Avoid shared state:

Requires synchronization
Locking means blocking
Often kills performance

Use state-of-art tools:

More powerful
Known issues addressed
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(Not)shared
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Source code

1 unsigned a = 0;
2 unsigned b = 0;
3

4 void threadOne()
5 {
6 for(int i=0; i<10*1000*1000; ++i)
7 a += computeSth(i);
8 }
9

10 void threadTwo()
11 {
12 for(int i=0; i<10*1000*1000; ++i)
13 b += computeSthElse(i);
14 }

Data-race free

Returns expected results
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Measurement results: 4-core



The problem PRNG (Not)shared Atomics Summary

Measurement results: 32-core
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Variables in memory

1 unsigned a; // used by thread #1
2 unsigned b; // used by thread #2

Remember Scott’s presentation?

False sharing is back!

Assume 32-bit

Most likely:

Consecutive addresses
Same cache line
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Line-wise

Caches are not byte-wise

Operate on lines

Tens-hundreds of bytes

Eg. 64B in my case

Operate on aligned addresses
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HOT-line

What can we do?
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Solution #1

Sun Tzu: Art of war. . .
. . . avoid situations like this! :)
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Not that simple

Almost sure:

Arrays
Globals in a single file

Probable:

Globals from different compilation units
Dynamically allocated memory

Risky business. . .
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Solution #2

Ensure won’t happen

One variable – one cache line:

Alignment
Padding
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Helper template

1 template<typename T, unsigned Align=64>
2 struct alignas(Align) CacheLine
3 {
4 static_assert( std::is_pod<T>::value,
5 "cannot guarantee layout for non-PODs" );
6 T data_;
7 // NOTE: auto-padded due to alignment!
8 };
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Before the fix: 4-core
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Lessons learned

Measure:

Do it always
Also "the obvious"
Especially when "you are sure"
No excuse for not doing so

Think about caches:

Great speed improvement
Worst-case scenario – cache miss
Not fully transparent
In-CPU cache coherency protocols
More CPUs == bigger impact
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"I know my hardware!" case

1 int g_counter = 0;
2

3 void threadCall() // called from multiple threads
4 {
5 for(int i=0; i<1*1000*1000; ++i)
6 ++g_counter;
7 }

Good. . . ?

Bad. . . ?

Ugly. . . ?

Results for 4 threads:

2000000 – 232/10000
4000000 – 526/10000
3000000 – 9242/10000

Right 5% of times

Smells like a bug!
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"I know my compiler!" case

1 volatile int g_counter = 0; // fix
2

3 void threadCall() // called from multiple threads
4 {
5 for(int i=0; i<1*1000*1000; ++i)
6 ++g_counter;
7 }

Good. . . ?

Bad. . . ?

Ugly. . . ?

Some results on 4 threads:

1000002 – 4/1000
1000060 – 8/1000
1000000 – 69/1000

Right 0 (% of) times

Closest: 1871882/4000000
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The Only Way(tm)

1 std::atomic<int> g_counter(0);
2

3 void threadCall() // called from multiple threads
4 {
5 for(int i=0; i<1*1000*1000; ++i)
6 ++g_counter;
7 }

Valid C++11

Using 4 threads

Result: 4000000

Always – lol!!!11
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Think before you code

1 std::atomic<int> g_counter(0); // shared
2

3 void threadCall() // called from multiple threads
4 {
5 int counter = 0; // local
6 for(int i=0; i<1*1000*1000; ++i)
7 ++counter;
8 g_counter += counter; // single write
9 }

Can be an option?

WAY faster
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Volatile rescue mission

Volatile and lost writes

Missed optimizations

Single-instruction summing failed

How about signaling?



The problem PRNG (Not)shared Atomics Summary

Volatile flags maybe?

1 volatile bool started1 = false;
2 volatile bool started2 = false;
3

4 void thread1()
5 {
6 started1 = true;
7 if(not started2)
8 std::cout << "thread 1 was first\n";
9 }

10

11 void thread2()
12 {
13 started2 = true;
14 if(not started1)
15 std::cout << "thread 2 was first\n";
16 }
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Results

Most of the time – fine

6/10000 times:

thread 1 was first
thread 2 was first

0.06% error rate

What really happened?
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Zoom in – original code

1 volatile bool started1 = false;
2 volatile bool started2 = false;
3

4 void thread1()
5 {
6 started1 = true; // memory write
7 if(not started2) // memory read
8 { /* some action */ }
9 }
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Zoom in – reordered

1 volatile bool started1 = false;
2 volatile bool started2 = false;
3

4 void thread1()
5 {
6 if(not started2) // memory read
7 { /* some action */ }
8 started1 = true; // memory write (!)
9 }
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Sequential consistency

Reordering by:

Compiler
Hardware

Do they break programs?

Restrictions:

No observables effects
As-if single-threaded

Explicit marking shared elements:

Atomics
Mutex-protected sections

Data-race free (DRF) code is a must!

SC for DRF
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Lessons learned

Never use volatiles for threading

I mean it!

Synchronize using:
Atomics
Mutexes
Conditionals

Mind sequential consistency (SC)
Write data-race free (DRF) code
Weird problems if you don’t
Reproducibility issues otherwise

Mind the efficiency:
Prefer local over shared
Synchronize when must

Experiment and verify

Do the code review
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Dos && don’ts

Rule No.1:

measure
MEASURE
M-E-A-S-U-R-E

Be cache-aware:

Keep non-shared data in separate cache lines
Prefer local over shared

Synchronize properly:

Ensure code is data-race free (DRF)
NEVER use volatiles for sharing
Benefit from sequential consistency (SC)

Homework:

Read C++11 memory model
Read multi-threaded executions and data races
x86* vs. ARM and IA-64
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More materials

Something to watch:

Threads and shared variables in C++11,
Hans Boehm,
available on Channel9
Atomic<> Weapons,
Herb Sutter,
available on Channel9
CPU Caches and Why You care,
Scott Meyers,
available on Code::Dive :)

Something to read:

C++ Concurrency in action: practical multithreading,
Anthony Williams
The Hitchhiker’s Guide to the Galaxy,
Douglas Adams
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Questions?

?
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